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Abstract. NFA (Non-deterministic Finite Automata) usually require 
significantly less states than DFA (Deterministic Finite Automata) to recognize 
the same language. The power of NFA lies in its ability to be in many states 
simultaneously (i.e., in a subset of its state set). The usage of one letter input 
alphabet puts some restrictions on this ability of NFAs and decreases the gap 
between NFAs and DFAs. We discuss limitations of unary NFAs (or NFAs in 
one letter input alphabet) and show that approximately 1/4 of all subsets of state 
set are unreachable and for every fixed k from {2,...,number_of_states-2} at 
least one subset of size k is unreachable. 

1. Introduction 

It is known that Non-deterministic Finite Automata (NFA) recognize the same 
languages as Deterministic Finite Automata (DFA) [1]. For every n state NFA there 
exists equivalent DFA with at most 2n states [1]. In case of two letter input alphabet it 
is possible to construct n state NFA for which equivalent DFA requires at least 2n-1 
states. For n=5 such automaton is shown in Fig. 1. In similar manner it can be 
constructed for arbitrary n. 
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 Fig. 1 
 
Unfortunately this kind of automata cannot reach the empty subset. Yet this can be 

fixed by adding the third letter to input alphabet, but adding no transitions for it. Thus 
input of it will lead to empty subset. It means, for three or more letter input alphabets 



it is possible to construct n state NFA for which equivalent DFA requires at least 2n 
states. 

In case of one letter input alphabet everything is not so evident. The most 
important contribution in the research of finite unary automata is given by Marek 
Chrobak. In paper [2] he compares different kinds of unary automata. He shows that 
each n state unary NFA can be simulated by unary DFA with no more than F(n) 
states, where F(n)=max{lcm(n1,n2,...,nk)|n1+n2+...+nk=n} and lcm() denotes the least 
common multiple. In the errata [3] Marek Chrobak mentions the best known 
approximation for F(n) gained by M. Szalay [4]. 

In this paper we will discuss some limitations of NFAs imposed by one letter input 
alphabet. In section 3 we propose a brief combinatorial illustration for the fact that for 
each n state unary NFA approximately 1/4 of its configurations is unreachable (thus 
equivalent DFA can be built with at most 3⋅2n-2 states). Our result is not so strong as 
Chrobak’s, but we provide more easily understandable argument showing that unary 
NFAs cannot reach considerable amount of their subsets. In section 4 we present our 
main result: for each k∈{2,...,n-2} every unary NFA cannot reach at least one of it’s 
subset of size k. Thus our proof shows the weakness of unary NFAs even for fixed 
size subsets. It is important to note that M. Chrobak doesn’t describe the nature of 
unreachable subsets but only counts them. 

This research was supported by Grant No. 05.1528 from the Latvian Council of 
Science and by the European Commission, Contract IST-1999-11234 (QAIP) phone: 
+371-7224363, fax: +371-7820153. 

2. Terms and Notations 

UNFA – Unary Non-deterministic Finite Automaton (its input alphabet consists of 
one letter) 

n-UNFA – UNFA that has n states  
q – a state of UNFA 
Qn – a set that contains all states of n-UNFA (|Qn|=n) 
qi→qj – represents a transition (due to reading one input letter) from qi to qj (qi,qj∈Qn) 
qi-ε→qj – represents an ε-transition from qi to qj (qi,qj∈Qn) 
configuration (or subset) – a subset of Qn  
Conf(t) – the configuration of n-UNFA at the moment t (after reading in a word of 

length t). This subset includes those and only those states which are reachable 
from some initial state by reading word of length t in (Conf(t)⊆Qn). 

subset S is reached at the moment t – S=Conf(t) 
a subset S is reachable – there exists t such as Conf(t)=S 
a subset S is not reachable – there does not exist t such as Conf(t)=S (in fact, it is 

sufficient to show that the automaton has not reached subset S before reaching 
some subset twice) 

|S| – the number of elements in the set S 
k-subset – a subset of Qn which contains exactly k states 
cycle – a set of states {q0,q1,...,qc-1} such as ∀i∈{0,...,c-1}:qi→qi⊕1, where ⊕ denotes 

addition modulus c (c is called the length of cycle) 



chain – a set of states {q0,q1,...,qc-1} such as ∀i∈{0,...,c-2}:qi→qi+1 (c is the length of 
chain, qc-1 is called the end of the chain) 

3. Unreachable Configurations 

It is known that each n-NFA can be transformed without changing the number of 
states and the amount of reachable configurations so that it does not contain 
ε-transitions [1]. In this section only n-NFA’s without ε-transitions will be discussed. 
 
Theorem T1 For each n-UNFA at least ~1/4 of its configurations is unreachable. 
 
Lemma T1[L1] If UNFA contains subgraph depicted in Fig. 2 (q1≠q2) then at least 
~1/4 of its configurations is unreachable. 
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Proof T1[L1] Let us denote the set of all configurations that contain q0 by N0 
(|N0|=2n-1) and the set of configurations that contain q1 and q2 by N1&2 (|N1&2|=2n-2). If 
Conf(t)∈N0 then Conf(t+1)∈N1&2 (it also concerns configurations that are included 
both in N0 and N1&2). All configurations from N0 are not reachable, because 
|N0|>|N1&2| and new configurations cannot be reached after the same configuration has 
been reached twice. Thus only |N1&2|+1 configurations from N0 are reachable. The 
other 2n-2-1 will be unreachable. The amount of unreachable configurations forms 
approximately 1/4 of all (2n) configurations. 
 
Lemma T1[L2] If UNFA contains subgraph depicted in Fig. 3 (q1≠q2) then at least 
~1/4 of its configurations is unreachable. 
 
Proof T1[L2] Let us denote the set of all configurations that contains q0 by N0 
(|N0|=2n-1) and the set of configurations that contains q1 or q2 by N1v2 
(|N1v2|=2⋅2n-1-2n-2=3⋅2n-2). If Conf(t)∈N1v2 then Conf(t+1)∈N0 (it also concerns 
configurations that are included both in N0 and N1v2). If the same configuration is 
reached twice then configurations that have not been reached until that moment will 
not be reached at all. Thus only |N0|+1 configurations from N1v2 are reachable. The 
other 2n-2-1 will be unreachable. The amount of unreachable configurations forms 
approximately 1/4 of all (2n) configurations. 
 
Lemma T1[L3] If UNFA contains neither subgraph depicted in Fig. 2 nor subgraph 
depicted in Fig. 3 (q1≠q2) then at least ~1/2 of its configurations is unreachable. 
 



Proof T1[L3] In this case the number of both incoming and outcoming arrows for 
each state is 0 or 1. Thus automaton consists of separate parts and each part is either a 
cycle or a chain. Let us perform the following transformations that do not influence 
the amount of reachable configurations. Remove all cycles that do not contain any 
initial state or contain only initial states. Thus all cycles of length 1 will be removed. 
Leave only one state in each cycle as initial. Find the chain with the most distant 
initial state viewed from its end and leave this state as only initial state in the chain. 
Remove all other chains. Now we have gained automaton that consists of cycles (with 
one initial state in each) of length greater then one and at most one chain with one 
initial state. Thus the number of initial states cannot be greater than ⎡n/2⎤. The amount 
of states contained in Conf(t) is not increasing in time. It means that automaton cannot 
reach its subsets containing more than ⎡n/2⎤ states. The number of k-subsets (where 
k∈{0,...,⎡n/2⎤}) is approximately 2n-1 or 1/2 of all n-UNFA’s subsets. 
 
Proof T1 Lemmas T1[L1], T1[L2] and T1[L3] cover all cases and in each case at least 
~1/4 of all configurations remains unreachable. Thus T1 has been proved. 

4. Unreachable Configurations of Fixed Size 

Theorem T2 It is not possible to construct n-UNFA (n≥4) that could reach all its 
k-subsets for arbitrary chosen k∈{2,...,n-2}. 
 
Statement T2[S1] For each n-UNFA (n≥4) and for each k-subset (k∈{2,...,n-2}) two 
states p1,p2∈Qn that belong to this subset and two states r1,r2∈Qn that do not belong to 
this subset can be found. This is because k≥2 and k≤n-2. 
 
Statement T2[S2] For each n-UNFA (n≥4), each k∈{2,...,n-2} and each quadruple of 
states p1,p2,r1,r2∈Qn k-subset W⊆Qn (such as p1,p2∈W, but r1,r2∉W) can be found 
(follows from T2[S1]). 
 
Lemma T2[L1] If n-UNFA (n≥4) contains ε-transition then for each k∈{2,...,n-2} 
unreachable k-subset can be found. 
 
Proof T2[L1] If n-UNFA contains ε-transition then a pair of states qp,qr∈Qn can be 
found such as qp-ε→qr. It means that a subset that includes qp, but does not include qr 
will be unreachable. According to T2[S2] for each k∈{2,...,n-2} such k-subset can be 
found (for instance, by taking p1=qp and r1=qr). 

From now on only n-NFA’s without ε-transitions will be discussed. Theorem T2 
will be proved by using reductio ad absurdum. We assume that it is possible to 
construct n-UNFA required in T2 and then examine the various properties this 
n-UNFA should have and derive a contradiction. The proof will be divided into two 
parts. In the first part (T2a) the assumption that the n-UNFA contains a cycle of 
length greater than three will be made. In the second part (T2b) n-UNFAs that does 
not contain a cycle of length greater than three will be examined. 
 



Theorem T2a It is not possible to construct n-UNFA (n≥4) containing a cycle of 
length c≥4 that could reach all its k-subsets for arbitrary chosen k∈{2,...,n-2}. 
 
Statement T2a[S1] For each n-UNFA (n≥4) containing a cycle C of length |C|≥4, for 
each k∈{2,...,n-2} and each quadruple of states p1,p2,r1,r2∈C k-subset W (such as 
p1,p2∈W, but r1,r2∉W) can be found (follows from T2[S2]). 
 
Lemma T2a[L1] The amount of simultaneously reachable states in each UNFA’s 
cycle cannot decrease in time. 
 
Proof T2a[L1] For each m different states qa1,qa2,...,qam∈C one can find m different 
states qb1,qb2,...,qbm∈C such as ∀j∈{1,...,m}:qaj→qbj where m∈{1,...,c}. It can be done 
by choosing bj=aj⊕1. It means: if m states from C are reachable at the moment t, i.e., 
|Conf(t)∩C|=m, then there will be at least m states reachable for the moment t+1, i.e., 
|Conf(t+1)∩C|≥m. Thus the amount of reachable states in a cycle cannot decrease 
with time. 
 
Lemma T2a[L2] If UNFA contains a cycle C then for each pair of reachable subsets 
S1=Conf(t1) and S2=Conf(t2), where t2>t1 and |S1∩C|=|S2∩C|, some d can be found 
such as S2∩C can be obtained by rotating S1∩C in the direction of cycle’s arrows by 
d units. 
 
Proof T2a[L2] Let us denote the elements of the set Conf(t1)∩C by qa1,qa2,...,qam∈C 
(m≤|C|). As in the proof of the T2a[L1], for each w>0 m different states 
qb1,qb2,...,qbm∈C such as {qb1,qb2,...,qbm}⊆Conf(t1+w) can be found by choosing 
bj=aj⊕w. S2 can be obtained by rotating S1 by d=t2-t1 in the direction of cycle’s 
arrows. This is because the amount of reachable states in the cycle is growing with 
respect to time (T2a[L1]) and |S1∩C|=|S2∩C|. 
 
Proof T2a Let us choose two k-subsets S1 and S2. So that states belonging to the set 
S1∩C are placed together and the four states mentioned in the statement T2[S2] are 
placed together in the following sequence: p1p2r1r2 (see Fig. 4). But states that belong 
to the set S2∩C are not placed together as four mentioned states are sequence p1r1p2r2 
(Fig. 5). 
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Here two arrangements in the cycle have been gained that cannot be gained one 
from another by rotation. Thus these both k-subsets are mutually exclusive – if one of 
these k-subsets can be reached then other cannot and vice versa (follows from 



T2a[L2]). It means that for each n-UNFA (n≥4) containing cycle of length greater 
than three for each k∈{2,...,n-2} there can be found at least two mutually exclusive 
k-subsets. In other words, there does not exist k from interval {2,...,n-2} such as any 
UNFA could reach all its k-subsets. 
 
Theorem T2b It is not possible to construct n-UNFA (n≥4) that does not contain a 
cycle of length c≥4 and could reach all its k-subsets for arbitrary chosen k∈{2,...,n-2}. 
 
Lemma T2b[L1] If n-UNFA does not contain any cycle one can find such state r∈Qn 
which cannot be reached more than once. 
 
Proof T2b[L1] At first we will prove that there is a state in n-UNFA that does not 
have any incoming arrow. Let us assume the opposite – each state has at least one 
incoming arrow but automaton does not contain any cycle. For arbitrary chosen state 
q1∈Qn one can find q2∈Qn such as q2→q1 and q2≠q1 (if q2=q1 then there would be a 
cycle in automaton). Similarly q3∈Qn can be found such as q3→q2 where q3 is some 
state we have not dealt before i.e. q3≠q2 and q3≠q1. This is because there is not any 
cycle in the automaton examined. Proceeding in similar manner we will finally come 
to qn∈Qn. Yet for qn it will not be possible to find previously unencoutered qx∈Qn 
such as qx→qn. Here the contradiction is derived, as there is some state r, which does 
not have incoming arrow. If the state r is initial then it can be reached only once, 
otherwise it cannot be reached at all. 
 
Statement T2b[S1] If n-UNFA (n≥4) does not contain any cycle then for each 
k∈{2,...,n-2} unreachable k-subset can be found (this is because according to T2[S2] 
for each k∈{2,...,n-2} at least two k-subsets containing state r mentioned in lemma 
T2b[L1] can be found). 
 
Lemma T2b[L2] If n-UNFA (n≥4) contains a cycle of length 1 (a state q pointing to 
itself) then for each k∈{2,...,n-2} unreachable k-subset can be found. 
 
Proof T2b[L2] If q is initial state then it is impossible to reach a k-subset to which q 
does not belong (the existence of such k-subset follows from statement T2[S2]). If q 
is not initial state then there should exist p∈Qn such as p→q as otherwise none 
k-subset containing q would be reachable. In this case it is not possible to reach more 
than one k-subset containing p, but not q. Yet there will be at least two such k-subsets 
(follows from T2[S2]: p1=p, r1=q, but p2 and r2 can be chosen in at least two different 
ways as there are at least 4 states in automaton) 
 
Lemma T2b[L3] If none of n-NFA’s (n≥4) initial states belongs to cycle, then for each 
k∈{2,...,n-2} there is unreachable k-subset. 
 
Proof T2b[L3] Let us construct a new UNFA A’ that contains all initial states of 
given n-UNFA A. There will be a transition from state q to state p in A’ iff state p can 
be reached from q in the given automaton A. There will not be any cycles in A’ not 
having been already in A. Thus there will be a state r in A’ which cannot be reached 



more than once (follows from T2b[L1]). It can be seen that also the corresponding 
state in A will not be reachable more than once. In T2[S2] we concluded that for each 
k∈{2,...,n-2} and each state r there is more than one k-subset that contains r. Thus for 
each k at least one k-subset will be unreachable. 
 
Lemma T2b[L4] If there exists initial state which belongs to some cycle C2 of length 2 
in n-UNFA (n≥4) then for each k∈{2,...,n-2} at least one unreachable k-subset can be 
found. 
 
Proof T2b[L4] According to T2a[L1] the amount of simultaneously reachable states 
in a cycle cannot decrease. Thus for each k∈{2,...,n-2} k-subset that does not contain 
any of C2 states will be unreachable. The existence of such k-subset follows from 
T2[S2]. 
 
Lemma T2b[L5] If there is more than one initial state in some n-UNFA’s (n≥4) cycle 
C3 of length three then for each k∈{2,...,n-2} unreachable k-subset can be found. 
 
Proof T2b[L5] By repeating similar arguments as in T2b[L4] it can be seen that for 
each k∈{2,...,n-2} those k-subsets that does not contain two C3 states will be 
unreachable. 
 
Lemma T2b[L6] If there is initial state in some n-UNFA’s (n≥5) cycle C3 of length 
three then for each k∈{2,...,n-3} (k≠n-2) unreachable k-subset can be found. 
 
Proof T2b[L6] In this case for arbitrary chosen three states r1,r2,r3∈Qn and for each 
k∈{2,...,n-3} at least one k-subset that does not contain any of states r1,r2,r3 can be 
found. It can be easily concluded that for each k∈{2,...,n-3} k-subset that does not 
contain any of three states belonging to C3 cannot be reached (here r1,r2,r3 are chosen 
from cycle C3). 
 
Proof T2b According to T2b[S1] automaton contains at least one cycle. T2a does not 
allow cycles with more than 4 states. Cycles consisting of only one state are denied by 
T2b[L2]. Thus automaton contains at least one cycle of length two or three. 
According to T2b[L3] at least one of initial states must be in a cycle. Let us denote 
this cycle by C. According to T2b[L4] the length of C cannot be 2. Thus C consists of 
3 states. There can be only one initial state in cycle C (follows from T2b[L5]). If there 
exists k, such as all k-subsets can be reached then according to T2b[L6] k∉{2,...,n-3} 
thus k could be only n-2. It means that all states that do not belong to cycle C have to 
be initial. Three different cases can be distinguished: 
 
a) Cycle C shares two states with cycle C2 of length 2 (see Fig. 6). There cannot be 

other kind of cycles of length 2 in the automaton otherwise there would be initial 
state in a cycle of length 2, but it is denied by T2b[L4]. 

 
b) Cycle C shares two states with at least one cycle of length 3 (see Fig. 7). Let us 

denote this cycle by C3. There cannot be other kind of cycles of length 3 in the 



automaton. Otherwise there would be two initial states in a cycle of length 3, but it 
is denied by T2b[L5]. There cannot be cycle of length 3, which contains the same 
states as the cycle C, but with arrows pointing in opposite direction. Then a cycle 
of length 2 containing initial state would be formed. 

 
c) Cycle C does not share any of its elements with other cycles (see Fig. 8). 
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For all three cases all states of automaton other than q1 and q2 are initial. 
 
a) Let us look at two (n-2)-subsets S1 and S2 such as S1∩C=q2 and S2∩C={q0,q2}. 

These two subsets are mutually exclusive. Subset S1 cannot be reached after 
reaching S2, because |S1∩C|<|S2∩C| (according to T2a[L1] the amount of 
reachable states in each cycle cannot decrease). Yet also subset S2 cannot be 
reached after reaching S1. If Conf(t)∩C=S1, then (Conf(t+1)∩C)⊇{q0,q1} and 
(Conf(t+2)∩C)⊇{q1,q2} and ∀d≥3:(Conf(t+d)∩C)⊇{q0,q1,q2}). 

 
b) In this case let us look at two (n-2)-subsets S1 and S2. S1 contains q1 and q0, but 

does not contain q2 and q3. S2 contains q2 and q3, but does not contain q0 and q1. 
These two subsets are mutually exclusive. This is because |S1∩C|=2 and 
|S1∩C3|=1, but |S2∩C|=1 and |S2∩C3|=2. According to T2a[L1] the amount of 
simultaneously reachable states in each cycles cannot decrease. This condition 
cannot be met no matter in what order S1 and S2 are reached. 

 
c) In this case C is the only cycle in automaton. Let us construct new automaton using 

the same principle as in the proof of lemma T2b[L3] (to avoid cycles we will 
neglect transition q0→q0). There will be no cycles in the automaton gained 
otherwise original automaton besides cycle C would contain at least one other 
cycle. Thus there will exist a state r which will not be reachable more than once in 
automaton constructed (follows from T2b[L1]) and also in original automaton. If 
r=q0 then cycle C is not reachable from states which does not belong to it. Thus the 
number of simultaneously reachable states in C cannot increase, thus subsets 
containing more than one state of C will not be reachable. If r≠q0 then r cannot be 
reached more than once (but according to T2[S2] it belongs to at least two different 
(n-2)-subsets). 

 
Proof T2 Theorems T2a and T2b together form T2. Thus by proving T2a and T2b, we 
have also proved the theorem T2. 
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